Math 275D Lecture 3 Notes

Daniel Raban

October 2, 2019

1 Uniform Continuity of Brownian Motion

1.1 Brownian Motion is Uniformly Continuous on $\mathbb{Z}[\frac{1}{2}]$

Recall that we wanted to define Brownian motion by defining it on $\mathbb{Z}[\frac{1}{2}]$, the dyadic rational numbers. We have $B(x) - B(y) \sim N(0, y - x)$ if $y, x \in \mathbb{Z}[\frac{1}{2}]$ and B(0) = 0. Since $(B(t_1), \ldots, B(t_n))$ is a Gaussian vector, to show that $(B(2) - B(1)) \perp (B(3) - B(2))$, for example, we need only show that these are uncorrelated.

Lemma 1.1. B on $\mathbb{Z}\begin{bmatrix}\frac{1}{2}\end{bmatrix}$ is uniformly continuous.

Here is the idea. Look at the interval [0, 1], and say $[a, b] \subseteq [0, 1]$ is an interval of length ε . We know that $|B(b) - B(a)| \sim N(0, \varepsilon) \sim \sqrt{\varepsilon}$.

We need to prove that

$$\lim_{\varepsilon \downarrow 0} \sup_{\substack{|t-s| \le \varepsilon \\ t, s \in \mathbb{Z}[\frac{1}{2}] \cap [0,1]}} |B(t) - B(s)| = 0.$$

The "bad event" where this does not happen is the union of small/basic bad events $\{|B(t) - B(s)| \geq \delta\}$, but we can show that the probability of the big bad event is $\ll \sum \mathbb{P}(\text{small bad event}).$

Proof. For each m and $\gamma > 0$, define $G_m^{\gamma} = \{ \not\exists k \text{ s.t.} |B(k/2^m) - B((k-1)/2^m)| \ge 2^{-\gamma m} \}$. Let $H^N = \bigcap_{m>N}^{\infty} G_m^{\gamma}$.

Now let's bound |B(y) - B(x)|. Find an interval $I_1 = [a, b] \subseteq [x, y]$ of length 2^{-N} . If we are in H^N , then $|B(b) - B(a)| \le 2^{-\gamma N}$. Now let $I_2 = [a - 1/2^{N+1}, a]$ and $I_3 = [b, b + 1/2^{N+1}]$ if these are contained in [x, y] and let them be \emptyset otherwise. Then if we are in H^N , $|B(a) - B(a - 1/2^{N+1})| \le 2^{-\gamma(N+1)}$ and similarly for I_3 . Proceeding like this, we can split the interval [x, y] into intervals I_k of length 2^{-n} for $n \ge N$ with at most 2 of each kind. So $[x, y] = \bigcup_{n=1}^{\infty} I_n$, and we get

$$|B(y) - B(x)| \le 2\sum_{m \ge N}^{\infty} 2^{m\gamma}.$$

So in H^N , if $|x - y| \le 2^{-(N-1)}$, then $|B(y) - B(x)| \le C2^{-N\gamma}$ for some constant C > 0. To get uniform continuity, we don't want to have fixed H^N . Using Markov's inequality with the fact that $\mathbb{E}[X]^4] = 1/2^m$ when $X \sim N(0, 1/2^m)$,

$$1 - \mathbb{P}(G_m^{\gamma}) = 2^m \mathbb{P}(|B(1/2^m) - B(0)| \ge 2^{-\gamma m}) \le \frac{2^{-2m}}{2^{-4\gamma m}} \le 2^{(-1+4\gamma)m}.$$

So $1 - \mathbb{P}(H^N)$ is bounded by a convergent geometric series. We will finish the proof next time.